Fabmate®

Тигли для источников электронно- лучевого испарения

Совместимые материалы для испарения:

Ag, Al, AlF $_3$, Al $_2$ O $_3$, Al/Si, As, Au, B, B $_4$ C, Be, Bi, CdS, CeO $_2$, Cr, Cu, Fe*, Ga, GaAs, Ge, GeO $_2$, In, ITO, La $_2$ O $_3$, Mg, MgF $_2$, MgO, Mo, NbFNi*, Ni/Cr*, Ni/Fe*, Pb, Pd, Pt, Rh, Se, Si*, SiO, SiO $_2$, Sn, Ta, Ta $_2$ O $_5$, Tb, Te, Th, Ti, TiO, TiO $_2$, Ti $_3$ O $_5$, WC, Y $_2$ O $_3$, Zn, ZrO $_2$ и другие

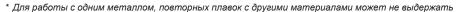
Особенности

- Электронно-лучевое испарение широкого спектра материалов
- Отлично подходит для изготовления оптических тонких пленок, полупроводников и других пленок
- Газонепроницаемая поверхность
- Уменьшает эффект «смачивания» поверхности тигля
- Высокая прочность
- Увеличенный срок службы
- Высокая чистота

Производственный процесс

- Высококачественный графит (мелкозернистый, высокопрочный, отлично обрабатываемый)
- Прецизионная механическая обработка до окончательных размеров
- Тщательная очистка для удаления твердых частиц
- Претерпевает аморфную обработку углеродом проникает и блокирует графит -Создает безмасляное, жесткое, тонкое покрытие (0,0001 " 0,0002 ")
- Очистка и окончательная упаковка
 - Очищен для моментального использования в вакууме
 - Защищен от воздействий окружающей среды

Опции


- Более 30 стандартных размеров
- По запросу доступны пользовательские размеры
- Доступны большие размеры**
- Доступны с толстыми размерами стенок***

Характеристики: Чистота 99,9995%

Металлические примеси, массовое, млн⁻¹

Na	Mg	Al	K	Ca	Ti	V	Mn	Fe	Ni	Cu	Zn
<0.005	<0.005	0.09	<0.005	<0.005	0.02	0.002	<0.001	0.03	0.01	<0.001	<0.005

Теоретическая плотность	2.26 r/cm ³				
Относительная плотность	~80%				
Средний размер зерна	<5 мкм				
Электрическое сопротивление (20°C)	~1.35 x 10 ⁻³ Ω·cм				
Теплопроводность (20°C)	121 Вт/м·К				
Тепловое расширение (25-200°C)	8.4 x 10 ⁻⁶ /K				
Термическая стабильность	2500°C (при инертной атмосфере); 510°C (при наличии кислорода)				
Прочность на сжатие	1.52 x 10⁵ кПа				
Предел прочности при изгибе	8.96 х 10⁴ кПа				
Предел прочности	6.89 х 10⁴ кПа				
Внешний вид	Темно-серый				

^{*} Уменьшает объем наполнения, материальные затраты на золото, платину и другие дорогие материалы

^{***} Может мешать вращению в многоподовых электронно-лучевых пушках

